
We will begin at 1:05

Read this problem while we wait…

Aliens abducted 100 mathematicians and put them into 100 separate rooms.
Each room has a surveillance camera and each mathematician can see the 99
other mathematician’s rooms except their own. Each room is painted in red or in
blue, but the colour of the paint can only be seen in camera, not by naked eye.
Then, the alien overlord makes an public announcement that at least one of the
rooms is painted blue, and that whoever that can figure out (with proof) the
colour of their own room will be sent back to Earth! Starting from that day, the
alien overlord will privately talk to each mathematician once per day, asking for
the proof (so they cannot just guess the colour). Suppose that every
mathematician is perfectly smart i.e. they will know if such proof exists and will
try to give it as soon as possible. Show that all mathematicians will eventually
return to Earth.



Record the meeting…



Some Housekeeping

• It is the case that I put the due date wrong. So, Problem Set 1
diamond-problems will be due tomorrow (midnight).

• Since Ko Naing Zaw Lu, Ko Phyoe Min Khant, Ko Kyaw Shin Thant
and me will all use the same google classroom, it makes sense to
change the name and recategorize everything. And I did exactly that.

• As you can see in the outline, lecture 6 is “counting in two ways”. If
you don’t know basic counting (permutations, combinations, etc.)
please study them before next Wednesday.



L1: Monovariants
L2: Invariants
L3: Alternating-variants

L4: Inductive constructions
L5: Greedy and RUST

L6: Counting in two ways
L7: Inequalities and bounding
L8: Counting in graphs
L9: Injections and bijections

L10: Pigeonhole principle
L11: Continuity and descent
L12: Leveraging symmetry

L13: Combinatorial games

L14: Combinatorial geometry

L15: Results in graph theory I
L16: Results in graph theory II

Content so far…
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Lecture – 4

Inductive Constructions



Comparison Game

There are sixteen sheep with distinct weights, and you have a sheep-scale. You can put two sheep
on the sheep-scale at a time, and the sheep-scale tells you which sheep is heavier. We would like to
arrange the sheep in an increasing order by weights. Can we do this by using the sheep-scale less
than 50 times?



Comparison Game

There are sixteen sheep with distinct weights, and you have a sheep-scale. You can put two sheep
on the sheep-scale at a time, and the sheep-scale tells you which sheep is heavier. We would like to
arrange the sheep in an increasing order by weights. Can we do this by using the sheep-scale less
than 50 times?

Left is heavier.



Let’s try the most obvious way…

The most obvious way is to compare any two of the sheep… and then find the heaviest sheep, then
the second heaviest sheep, etc.

But then, we would have to use the sheep-scale times!

Heaviest 2nd Heaviest



Building up

If we have 2 sheep, we can figure out with 1 use.

If we have 4 sheep, how many do we need?
• Break the sheep into 2 herds of equal size.
• We know how to arrange each herd…
• Do we know how to ‘merge’ the herds?

Merging sheep
• Now, with one comparison, we can figure out

the lightest sheep!
• Now, with another comparison, we can figure

out the 2nd lightest sheep.
• With another comparison, we can figure out the

3rd lightest sheep.



What about 8 sheep?

• Break the sheep into 2 herds of equal size.
• We know how to arrange each herd.
• Now, we can know the lightest sheep by using 1 comparison.
• So, we can know the 2nd lightest sheep by using 1 comparison.
• …
• So, we can know the 7th lightest sheep by using 1 comparison.

comparisons

comparisons



Thus, for 16 sheep,
we only need to compare at most times!



For       sheep?

Let be the minimum number of comparisons we need to arrange sheep.

Then, for all and .

We just need to solve this recursion. Easy Job



An Oxford Interview Problem

Call a rectangle silver if it is similar to a rectangle. For which integers is it possible to
tile a square with silver rectangles which are not necessarily congruent to each other?



Let’s Play Around…

Let’s play around with some small values of .

Can you make a square if ?

Can you make a square if ?

Can you make a square if ?

Can you make a square if ?

Seems no…



Main Observation…

You can generate more configurations by
subdividing a silver rectangle into 4 silver
rectangles.

If silver rectangles make a square, then silver rectangles also make a square.

Possible with
2 rectangles

Possible with
5 rectangles

Possible with
8 rectangles

Possible with
rectangles

…

This observation causes chain reaction.



Constructions for small 

Possible with
2 rectangles

Possible with
5 rectangles

Possible with
8 rectangles

Possible with
rectangles

…

Possible with
3 rectangles

Possible with
6 rectangles

Possible with
9 rectangles

Possible with
rectangles

…

Possible with
4 rectangles

Possible with
7 rectangles

Possible with
10 rectangles

Possible with
rectangles

…



Constructions for small 

Possible with
6 rectangles

Possible with
7 rectangles



Colouring Made Easy…

How many ways are there to colour the vertices of a regular -gon using at most colours so that
the vertices on every side are of different colours?



Small Examples

ways
ways

ways

ways

ways

way

ways

ways

ways

ways

ways



Reduce to a smaller problem

minus

Let be the number of ways to colour a -cycle with at most colours.

ways

ways

ways ways

ways

ways

ways



Solve the recurrence

Now, backward substitute and simplify to get . This looks messy, but straightforward.

Geometric series



For general graphs

minus

They both have one less edge



Chromatic polynomials

So, for any graph , number of ways to colour the vertices with at most colours so that no two
vertices of the same colour are adjacent is equal to some polynomial of . This polynomial is called
the chromatic polynomial of .

Question: Given a polynomial , how can we know if it is the chromatic polynomial of some
graph? No one knows the answer

some integer



Uses of Induction

• Divide and Conquer: To break the problem into smaller (but similar) pieces, then combine them.

• Recurrences: To setup recurrence relations to count/bound something.

• Staircase (Chain reaction): To construct a sequence of examples.

divide

conquer



Distributing Marbles (China Girls MO, Problem 7)

Let be a positive integer. marbles are distributed among boxes arranged in a
row. We are allowed to make following moves:

• For , if has at least 2 marbles in it, we may remove 2 marbles from and put
one in each of and .

• If has a marble in it, we may move it to .
• If has a marble in it, we may move it to .

Show that it is possible to make each box have one marble each.



Example



Let’s Attempt to Induct…

Suppose that we know how to do this if we have marbles and boxes.

So… the following is the ideal situation to apply induction:

marbles

Let’s just say we are in this situation. Does induction kill the problem?



Let’s Attempt to Induct…

marbles

• If is the last box, we know how to make each of have one marble, let’s say
via a sequence of moves on the boxes.

• The problem happens when appears in because in the situation for boxes, we need to
have 2 marbles in whereas we only need to have 1 in for the inductive situation.

• Easy, whenever we need to use , move marble from into first, then we continue
as in the inductive algorithm.



When can we induct?

So, we are done once is non-empty. Because then, we can make the following situation:

marbles

How do we do this? Note: if there are no marbles in , then we have the following situation:

marbles



How to send a marble to        ?

Observation: If is empty, we can always make a move, so we never get stuck.

Goal: Get 2 marbles into .

marbles

So, if we can prove the following, then we are done!

For , if                             contain more than marbles altogether, 
Then we can put one more marble into             . 



Another Induction

For , if                             contain more than marbles altogether, 
Then we can put one more marble into             . 

• This is obvious if or .
• Suppose we have proven this for all numbers less than . Let’s prove for boxes.

marbles

• Goal: Put two marbles into          .
• If          has less than 2 marbles, then                                altogether contain more than 

marbles. So, by induction, we can put one more marble into          . Do this twice if necessary.



Writing up…

Step 1: We will first show that we can make non-empty. To do this, we shall use the following
lemma:

Lemma. For , if contain more than marbles altogether, then we can put
one more marble into .
Proof: If or , this is obvious. If contains less than 2 marbles, then the boxes

altogether contain more than marbles. So, by inductive assumption, we can
put one more marble into . Hence, we can make contain at least 2 marbles. Thus, we can
put one more marble into .

So, if is empty, then the boxes altogether contain more than marbles.
Therefore, we can put one marble into .

We will induct on . The problem is obvious if . Now, suppose that we have an algorithm 

that does what we need in the case where we have boxes. We will construct an algorithm for 
the case with boxes.



Writing up…

Step 2: Once is non-empty, dump all but one marble from into . Now, we will
apply the algorithm on the boxes with the following modification: whenever
we have to make a move on , we move the marble in into first, and then do the
desired move on . This ensures that contains at least marbles whenever we need to
make a move on . When is finished, all boxes will each contain one
marble. So, we are done!



Alternate method to put a marble into        

As long as is empty, we can still make a move.

Strategy: Just do any move on any of as long as it is possible.

If we cannot do our strategy anymore, then it means that we have put a marble into . So, we
just need to show that our strategy terminates.



Alternate method to put a marble into        

1 3 6 10 15

• To each marble in box , assign the weight .

• Let be the sum of all the weights of the marbles. What is the behaviour of ?

• increases with each move.

• But, since there are only finitely many possible configurations, cannot increase forever.
Bravo!



It’s time for a break!

See you on Problem Solving Session.


