

Video – 2

Angle Bashing

GEO

I

Q1. Rhombus inside Triangle

In the figure, PQ = QR = RS = PS = AQ = BP = CR. Find $\angle B$ and $\angle C$.

Q1. Rhombus inside Triangle

In the figure, PQ = QR = RS = PS = AQ = BP = CR. Find $\angle B$ and $\angle C$.

Solution

Let x = blue and y = green. Then,

By moving angles around, x = 2y

PQRS is rhoumbus and so PQ || BC.

So,
$$\angle A = x$$
 as well.

Hence,

$$x + x + y = 180^{\circ}$$
 gives $5y = 180^{\circ}$.

Therefore, $y = 36^{\circ}$ and $x = 72^{\circ}$.

Q2. Too Many Conditions for a Good Name

In triangle ABC, $\angle A = 60^{\circ}$, BR = RP = PQ = QC and QR \perp AB. Find \angle B and \angle C.

Q2. Too Many Conditions for a Good Name

In triangle ABC, $\angle A = 60^{\circ}$, BR = RP = PQ = QC and QR \perp AB. Find \angle B and \angle C.

Solution

Let x = blue and y = green.

Then, $x + y = 120^{\circ}$ (eq1)

Note that $\angle AQR = 30^{\circ}$.

Looking at PQC, $2y = grey + 30^{\circ}$.

Looking at BPR, $2x = grey + 90^{\circ}$.

Hence,
$$2x - 2y = 60^{\circ}$$
 i.e. $x - y = 30^{\circ}$ (eq2)

Solving (eq1) and (eq2), we get

 $x = 75^{\circ}$ and $y = 45^{\circ}$.

Q3. Equal Lengths in a Quadrilateral

In quadrilateral ABCD, AB = AC, \angle DAB = 80°, \angle ABC = 75° and \angle CDA = 65°. Find \angle CDB.

Q3. Equal Lengths in a Quadrilateral

In quadrilateral ABCD, AB = AC, \angle DAB = 80°, \angle ABC = 75° and \angle CDA = 65°. Find \angle CDB.

Solution

$$\angle DCA = 360^{\circ} - (80^{\circ} + 75^{\circ} + 75^{\circ} + 65^{\circ}) = 65^{\circ}.$$

Therefore, AC = AD.

So,
$$AB = AD$$
.

This gives $\angle ADB = 50^{\circ}$.

Therefore, $\angle CDB = 65^{\circ} - 50^{\circ} = 15^{\circ}$.

Q4. Fan-shaped Angles

Let P be a point inside an acute triangle ABC such that PA = PB. Suppose that \angle PAB = 40°, \angle PBC = 20° and \angle APC = 120°. Find \angle ACP.

Q4. Fan-shaped Angles

Let P be a point inside an acute triangle ABC such that PA = PB. Suppose that \angle PAB = 40°, \angle PBC = 20° and \angle APC = 120°. Find \angle ACP.

Solution

Note that $\angle APB = 180^{\circ} - (40^{\circ} + 40^{\circ}) = 100^{\circ}$.

Therefore, $\angle BPC = 360^{\circ} - (100^{\circ} + 120^{\circ}) = 140^{\circ}$.

Hence, $\angle PCB = 180^{\circ} - (140^{\circ} + 20^{\circ}) = 20^{\circ}$.

Therefore, $\angle PBC = \angle PCB$.

So, PB = PC and hence PA = PC.

Thus, $\angle ACP = (180^{\circ} - 120^{\circ})/2 = 30^{\circ}$.

Q5. Twice the Median

In triangle ABC, M is the midpoint of side BC. Suppose that \angle BAM = 30° and \angle MAC = 75°. Prove that AB = 2AM.

Q5. Twice the Median

In triangle ABC, M is the midpoint of side BC. Suppose that \angle BAM = 30° and \angle MAC = 75°. Prove that AB = 2AM.

Solution

Let N be midpoint of AB.

Our goal is to show that AN = AM.

Note that MN || AC.

Thus, $\angle AMN = blue = 75^{\circ}$.

And \angle ANM = $180^{\circ} - (30^{\circ} + 75^{\circ}) = 75^{\circ}$.

Therefore, $\angle AMN = \angle ANM$.

Hence, AN = AM.

Q6. Rotated Equilaterals

In the figure, ABC and CEF are equilateral triangles. Suppose that \angle FBE = 85°. Find \angle AEB.

Q6. Rotated Equilaterals

In the figure, ABC and CEF are equilateral triangles. Suppose that \angle FBE = 85°. Find \angle AEB.

Solution

Note that $\angle ACE = 60^{\circ} - \angle BCE$.

Also, $\angle BCF = 60^{\circ} - \angle BCE$.

Therefore, $\angle ACE = \angle BCF$.

Hence, ΔCAE and ΔCBF are congruent by SAS.

Now, $\angle BEF + \angle BFE = 95^{\circ}$.

So,
$$\angle$$
BEC + \angle BFC = 215°.

So,
$$\angle$$
BEC + \angle CEA = 215°.

Therefore, $\angle BEA = 360^{\circ} - 215^{\circ} = 145^{\circ}$.

That's it for this video.

GEU

See you soon!

I