Video - 1

Further Tricks and Challenging Problems

Section - I

Counting by Cases

Q1: Painting a Room

Myint Thu has six different colours of paint available. He wants to paint the four walls of his box-shaped room using these colours so that adjacent walls receive different colours. In how many ways can he do this?

Q1: Painting a Room

How NOT to do this question

Wall A	Wall B	Wall C	Wall D
6	5	5	???
choices	choices	choices	choices

4 choices if A and C are different, 5 choices if A and C are same.

Q1: Painting a Room

Solution:

Group the colourings into two types.

- Type 1: A and C have different colours,
- Type 2: A and C have the same colour.

Counting Type 1

- Wall A: 6 choices
- Wall B: 5 choices
- Wall C: 4 choices
- Wall D: 4 choices

Counting Type 2

- Wall A: 6 choices
- Wall B: 5 choices
- Wall C: 1 choice
- Wall D: 5 choices

Number of type $1 = 6 \times 5 \times 4 \times 4$

Number of type $2 = 6 \times 5 \times 1 \times 5$

Q2: Colourful Triangles

In triangle ABC, there are 3 red points on side AB, 3 blue points on side BC and 3 yellow points on side AC. Soe Htet wants to connect three of these coloured points to create a (non-degenerate) triangle. In how many ways can he draw his triangle?

Q2: Colourful Triangles

Solution: Group the triangles into two types:

- Type 1: Triangles with 3 colours,
- Type 2: Triangles with 2 colours.

Counting Type 1

- Decision 1: Choose a red point.
- Decision 2: Choose a blue point.
- Decision 3: Choose a yellow point.

Counting Type 2

- Decision 1: Choose the colour for the base.
- Decision 2: Choose the base.
- Decision 3: Choose the tip.

Number of type $1 = 3 \times 3 \times 3$

Number of type $2 = 3 \times 3 \times 6$

Section - II

When Cases are not Disjoint

Q3: Arranging HEAPS

Hnin Pwint wants to arrange the letters of the word HEAPS. But, since she really likes her name, she want the new word to start with a 'H', or end with a 'P' (or both).

For example, HAPSE, SHEAP, HASEP are good words for her.

Q3: Arranging HEAPS

Solution

We can make two types as usual.

- Type 1: Words starting with H, \longleftarrow $4 \times 3 \times 2 \times 1 = 24$
- Type 2: Words ending with P. \longleftrightarrow $4 \times 3 \times 2 \times 1 = 24$

If we add up, the words H $_$ $_$ P will be counted twice. So, we need to subtract the number of words H $_$ $_$ P.

$$3 \times 2 \times 1 = 6$$

So, the answer is 24 + 24 - 6 = 42.

These objects are counted twice!

Inclusion-Exclusion Principle (for 2 sets)

Suppose that we can group the given set of objects into two (possibly non-disjoint) groups. Suppose that

- there are N_1 objects in the 1st group,
- there are N_2 objects in the 2nd group,
- there are $N_{1,2}$ objects in both groups.

Then, the total number of objects is equal to $N_1+N_2-N_{1,2}$.

Question: What will be the formula for three groups?

These objects are counted twice!

Q4: Writing Multiples

Aye Mi and Bo Bo are writing down some numbers in their notebooks. Aye Mi writes down all multiples of 3 from 30 to 300. Bo Bo writes down all multiples of 5 from 50 to 500.

How many different numbers do they write down altogether?

Q4: Writing Multiples

Solution

Aye Mi wrote down
$$\frac{300-30}{3}+1=91$$
 numbers.

Bo Bo wrote down
$$\frac{500-50}{5}+1=91$$
 numbers.

Both of them wrote down
$$\frac{300-60}{15}+1=17$$
 numbers.

So, altogether they wrote down 91 + 91 - 17 = 165 different numbers.

Q5: Rooks on the Board

Six identical rooks are to be placed on a 6×6 chessboard. We want to place them so that no two rooks lie in the same row/column.

(a) In how many ways can we do this?

Answer: 720

(b) In how many ways can we do this if we cannot place the rooks at the top-left and bottom-right corners? Answer: 504

Q5: Rooks on the Board

Solution

(a) This is just multiplication principle.

• Decision 6: Put a rook on the 6th row. ← 1 choice

So, number of ways is $6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$.

Q5: Rooks on the Board

Solution

Strategy: We will find what we don't want, and subtract from 720.

We can group the "bad" ways into two types

- Type 1: Those with a rook at top-left corner, \longleftarrow $5 \times 4 \times 3 \times 2 \times 1$
- Type 2: Those with a rook at bottom-right corner. $\leftarrow 5 \times 4 \times 3 \times 2 \times 1$

And, $4 \times 3 \times 2 \times 1 = 24$ ways are both type 1 and 2.

Thus, the answer is 720 - (120 + 120 - 24) = 504

Section - III

Multiplication on Steroids

Q6: The Hexagon Triangle

Consider a triangular grid of made up with 15 regular hexagons. We are to colour the interiors of the hexagons in either red, blue or yellow. Whenever three hexagons meet at a vertex, we either want them all to have the same colour, or to have all different colours. In how many ways can we do this?

Q6: The Hexagon Triangle

Solution

Main Observations

- Colouring the first row is enough to fill out all hexagons.
- We can colour the first row whatever we want.

There are 3 choices for each hexagon in top row.

So, number of ways $= 3 \times 3 \times 3 \times 3 \times 3 = 243$.

Q7: Number of Divisors

How many divisors does the number 1200 have in total?

Answer: 30

Solution

First, note that $1200 = 2^4 \times 3 \times 5^2$.

So, each divisor = (some power of 2) \times (some power of 3) \times (some power of 5).

5 choices

T 2 choices

3 choices

Number of divisors is $5 \times 2 \times 3 = 30$.

Number of Divisors Formula

Let N be a positive integer with prime factorization: $2^{k_1} \times 3^{k_2} \times 5^{k_3} \times \cdots$.

Then, number of divisors of N is equal to $(k_1 + 1)(k_2 + 1)(k_3 + 1) \cdots$.

Examples

- Number of divisors of $2 \times 3 \times 7$ is equal to (1+1)(1+1)(1+1) = 8.
- Number of divisors of $2023 = 7 \times 17^2$ is equal to (1+1)(2+1) = 6.

Q8: Counting Subsets

Let n be a positive integer. How many subsets does the set $\{1,2,3,\ldots,n\}$ have?

Example

• For n=3, the set $\{1,2,3\}$ has 8 subsets:

 \emptyset $\{1,2\}$

 $\{1\}$ $\{1,3\}$

 $\{2\}$ $\{2,3\}$

 ${3}$ ${1,2,3}$

Q8: Counting Subsets

Let's try for n=4 first.

To make a subset of $\{1, 2, 3, 4\}$, we have to go through four decisions:

- Decision 1: To include or not to include 1.
- Decision 2: To include or not to include 2.
- Decision 3: To include or not to include 3.
- Decision 4: To include or not to include 4.

There are 2 choices for each decision.

So, number of subsets we can create is $2 \times 2 \times 2 \times 2 = 16$.

Q8: Counting Subsets

To make a subset of $\{1, 2, 3, \dots, n\}$, we have to make n decisions:

- Decision 1: To include or not to include 1.
- Decision 2: To include or not to include 2.
- ..
- Decision n: To include or not to include n.

So, there are
$$2 \times 2 \times 2 \times \cdots \times 2 = 2^n$$
 possible subsets.

That's it for this video.

Have a nice rest!

