

We will start at 07:05 PM

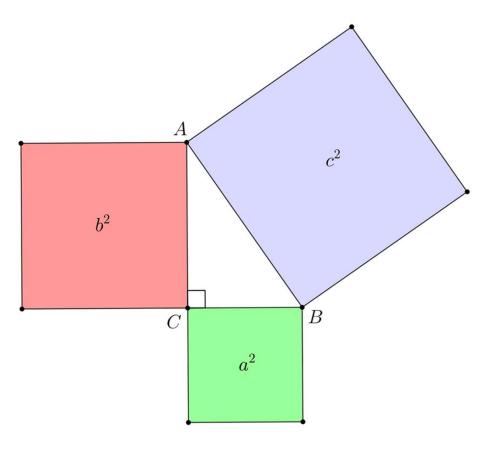
Try this problem in the mean time:

A ship starts at point O. It then sails 1 km east, 2 km north, 3 km west, 4 km south, 5 km east, ..., 10 km north. What is the distance beween the ship and O?

Record the Meeting

GEU

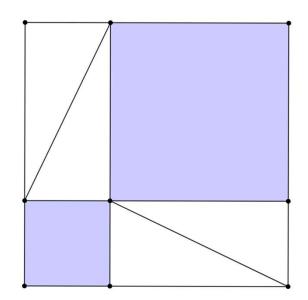
Lesson – 3

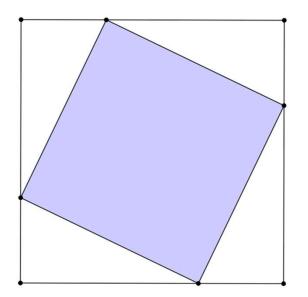

Right Triangles and Pythagoras

GEO

Pythagoras Theorem

Theorem: Let $\triangle ABC$ be a right triangle with $\angle C = 90^{\circ}$. Then, $AB^2 = AC^2 + BC^2$.

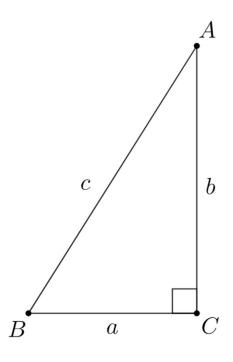




Pythagoras Theorem

<u>Proof</u>

Make 4 copies of $\triangle ABC$ and assemble them in two different ways as follows. In the left picture, blue area = $AC^2 + BC^2$. In the right picture, blue area = AB^2 .



Pythagorean Triples

It is useful to remember some common right triangles with integer side-lengths. For example,

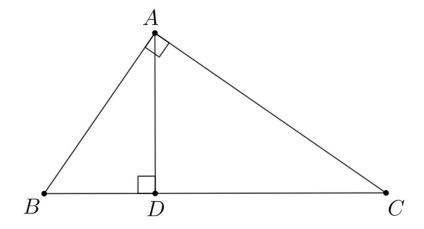
<u>a</u>	<u>b</u>	<u>C</u>
3	4	5
5	12	13
8	15	17
9	40	41

Note that if (a, b, c) form a Pythagorean triple, then (ka, kb, kc) is also a Pythagorean triple for any positive integer k.

For example, (9, 12, 15) and (16, 30, 34) are Pythagorean triples.

Q1. Warm-up

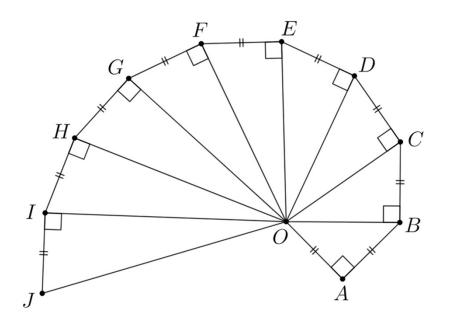
Let ABC be a right triangle with $\angle A = 90^{\circ}$.


Let BD = 6, AB = 10 and CD = 15. Find AC.

Solution

$$AD^2 = 10^2 - 6^2 = 64$$

$$AC^2 = 64 + 15^2 = 289$$


Therefore, AC = 17.

Q2. Pythagorean Spiral

In the figure, all the marked lengths are equal to 1. What is the length of OJ?

Q2. Pythagorean Spiral

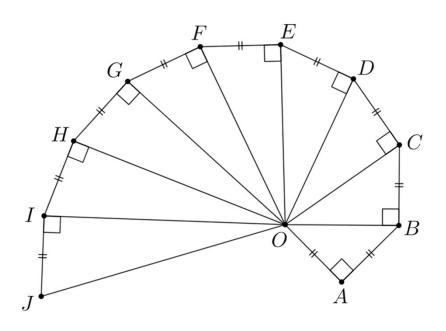
In the figure, all the marked lengths are equal to 1.

What is the length of OJ?

Solution

$$OB^2 = 1^2 + 1^2 = 2$$

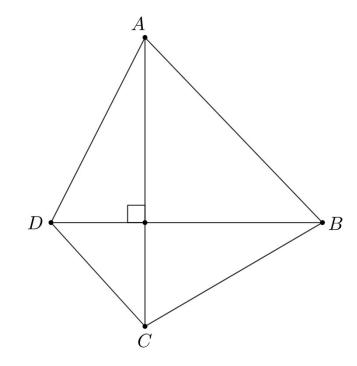
$$OC^2 = 2 + 1^2 = 3$$


$$OD^2 = 3 + 1^2 = 4$$

$$OE^2 = 4 + 1^2 = 5$$

. . .

$$OJ^2 = 9 + 1^2 = 10$$


Hence, OJ = sqrt(10).

Q3. Perpendicular Diagonals

Diagonals of a convex quadrilateral ABCD are perpendicular. Suppose that AB = 7, BC = 6 and CD = 4. Find AD.

Q3. Perpendicular Diagonals

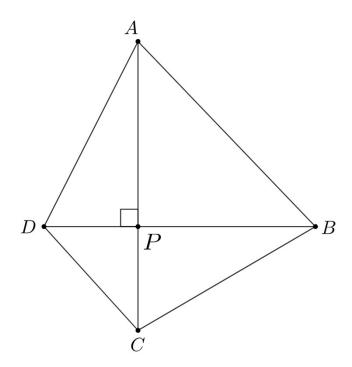
Diagonals of a convex quadrilateral ABCD are perpendicular.

Suppose that AB = 7, BC = 6 and CD = 3. Find AD.

Solution

Let two diagonals cut at P.

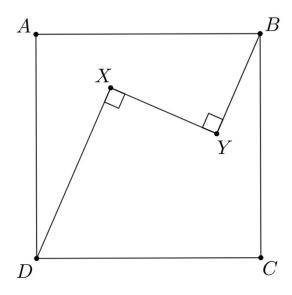
$$AD^2 = PA^2 + PD^2$$


$$PA^2 = AB^2 - PB^2$$

$$PD^2 = CD^2 - PC^2$$

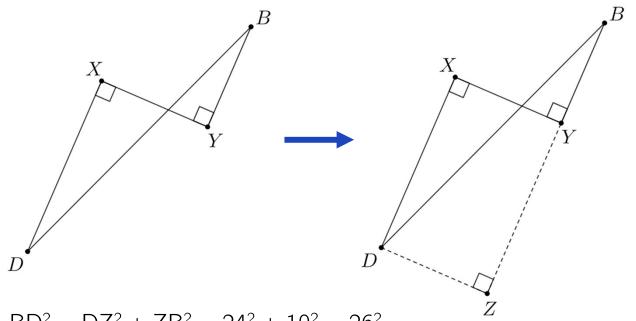
So,

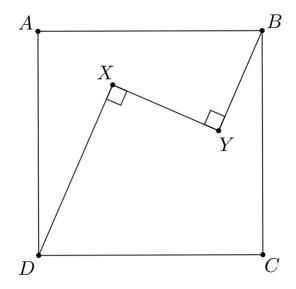
$$AD^2 = AB^2 + CD^2 - PB^2 - PC^2 = AB^2 + CD^2 - BC^2$$
.


Hence,
$$AD^2 = 49 + 9 - 36 = 22$$
. So, $AD = sqrt(22)$

Q4. Zig-zag in Square

In the figure, ABCD is a square. Let DX = 16, XY = 10 and BY = 8. Find the area of ABCD.





Q4. Zig-zag in Square

Solution

Critical observation: We just need to find BD.

$$BD^2 = DZ^2 + ZB^2 = 24^2 + 10^2 = 26^2$$
.

So, (side-length)² =
$$13 \times 26 = 338$$
.

Q5. Ship Patrol

A ship starts at point O. It then sails 1 km east, 2 km north, 3 km west, 4 km south, 5 km east, ..., 10 km north. What is the distance beween the ship and O?

Solution

Horizontal displacement = |1 - 3 + 5 - 7 + 9| = 5

Vertical displacement = |2 - 4 + 8 - 10| = 4

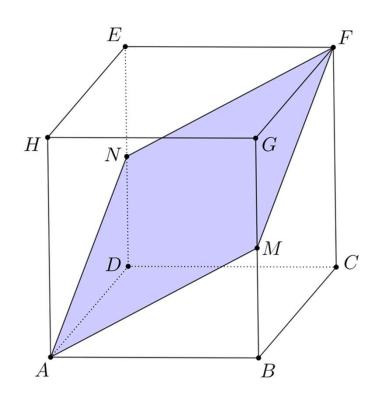
So, distance² = $4^2 + 5^2 = 41$.

Thus, distance = sqrt(41).

Let's have a short break.

GEU

We will continue after 5 minutes.


Record the Meeting

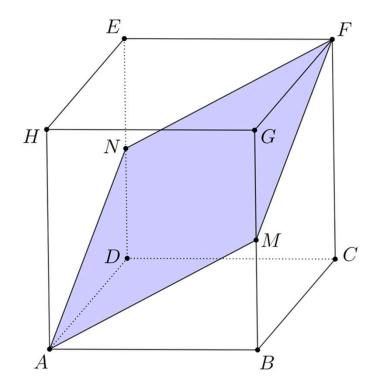
GEU

Q6. 3D Pythagoras

In the figure, ABCDEFGH is a cube and M, N are midpoints of BG and DE respectively. Side-length of the cube is 4. What is the area of parallelogram AMFN?

Q6. 3D Pythagoras

In the figure, ABCDEFGH is a cube and M, N are midpoints of BG and DE respectively. Side-length of the cube is 2. What is the area of parallelogram AMFN?


Solution

AMFN is rhombus. So, area = AF \times MN / 2.

$$AF^2 = AB^2 + BC^2 + CF^2 = 12.$$

$$MN^2 = BD^2 = AD^2 + AB^2 = 8$$
.

Hence, area = $sqrt(12 \times 8)/2 = 2sqrt(6)$.

We both earned our rest.

See you next week.

GEU