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Let 73(Z}) be the largest size of a subset A C Z} that does not contain a proper arithmetic
progression of length 3. That is, whenever z,y,z € A satisfy « + z = 2y, at least two of z, y, z must
be equal. A recent paper of Elsholtz and Pach (2020) deeply explores the lower bounds for r3(Z}) by
extending the well-known constructions for Z, and gives the exact value of r3(Z}) for n < 5. The result

that we are interested in today is the following asymptotic bound.

Theorem 1. There exists a constant C such that

r3(Z}) > Cn~Y/23",

We will explore three different constructions giving us three proofs to theorem 1.

1 The First Proof

This proof is the simplest one we are going to see today. Let
S={(z1,...,2,) €{0,1,2}" : z; = 1 form = |n/3| values i} C Z}.

We claim that S has desired number of elements and in fact it does not even contain three collinear

points. Indeed,
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Now, suppose to the contrary that S contains three points z, y, z forming a non-trivial arithmetic pro-

gression. Then,
xi=vy; =2z or (x;y;,2)=1(0,1,2)or(2,1,0)or (2,0,2)or (0,2,0)

for each coordinate x;, y;, z; of x,y, z. Since the number of 1s in each vector is constant, it follows that

(x4, 9i,2) = (0,1,2) or (2, 1,0) is impossible. Therefore, we must have z = z.



2 Second Proof

This construction will make use of binary codes with certain minimum distances. For positive integers
mand d withm > d, let A(m, d) denote the largest possible size of a code in F5* with minimum hamming
distance at least d. Note that

A(m,1)=2" and A(m,2)=2"""1.

The main observation is the following:

[ Theorem 2. For n > 1, we have r3(Z}) > maxo<i<n Y1y iy (7)A(i, 0 —t).

Proof. Foreacha € Z},letT(a) = {i € [n] : a; € {0,2}} i.e. T(a) records the positions of 0s and 1s. If

a,b,c € {0,1,2}" form an arithmetic progression, as we have seen in section 1, we must have
(ai,bi,¢;) € {(0,0,0),(1,1,1),(2,2,2),(0,1,2),(2,1,0),(2,0,2),(0,2,0)}.

Therefore, a and c only differ at positions i € T'(a) \ T'(b) and T'(a) = T'(¢) C T'(b).
Fix any t and S C {0, 1, 2}" be such that
e |T(a)] > tforalla € S, and

e for all T with |T| > ¢, the set {a € S : T(a) = T} has minimum hamming distance at least
IT| —t+ 1.

Then, if a, b, c € S were to form a proper arithmetic progression, then
d(a,¢) < [T(a)\T®)| = [T(a)| = |T®) < [T(a)| — ¢

which implies that a = c.

We may construct an explicit example of the set S as follows. For every T' C [n] of size at least
i > t, take a binary code in {0, 2} of size A(i,i —t) of minimum distance i — ¢ and put 1s in other entries
[n] \ T to get a code Ar. Then, let S = Ljp>; Ar satisfies the desired properties and its size meets the

stated lower bound. O

We can easily obtain a bound for r3(Z} ) by substituting a value of ¢ in theorem 2 so that A(¢,i—t)
are easy for calculation. One may do this by setting ¢t = [(2n — 5)/3] and get
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3 The Third Proof

This construction mimics Behrend’s construction of projecting a sphere into Z. In fact, we have a

stronger result.



Theorem 3. Let m > 4 be even. There exists some constant C,,, > 0 such that

n@ > %2 (222

. 4 3 2__
With o,, = \/m A8 2m= A8 one can choose Cy, = ﬁ For large m, one has that C,,, ~
8v5
V3m?2’

Proof.  Define
- 2
Sp={(a1,...,an) 1a; € {0,1,...,m/2},> (ai_ %) _ R}
i=1

Then, each Sgr does not contain a proper 3-term arithmetic progression. Suppose P;, P», P3 are points
forming an arithmetic progression in Sg. For illustration purposes, suppose for now that the i-th coor-
dinates of P;, P,, P3 have the form a; — d;, a;, a; + d;. Then, we have
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and thus >, 2d? = 0. So, the three points are identical. However, in Z, for even m, the i-th co-
ordinates may also have the form 0,m/2,0 or m/2,0,m/2. The rest of the coordinates have the form
a; — d;, a;, a; + d;. Then, arguing as before, we can show that d; = 0 for all ¢ with coordinates not of the
form m/2,0,m/2 or 0,m/2,0. Hence, P; and P are identical, contradiction.

We wish to find a Sr with many points. We may do so by first using Chebyshev’s inequality

to determine a range of radii in which majority of the points lie in, then use pigeonhole principle to

pick one of these highly populated spheres. Consider a4, ...,a, to be independent random variables
distributed uniformly over the set {0, 1, ...,m/2}. Define the random variables
Vi—ai-D Zi=YZ Z=Zit-+7
fori € {1,...,n}. Then, calculations show that
1, 1
E(Z) = nE(Z;)
JVar (Z)) \/m4 +8m3 + 4m? — 48m
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V/Var (Z) = +/n - y/Var (Z;)

Write y = E(Z) and ¢ = /Var (Z). By Chebyshev’s inequality, we can see that for at least two-thirds
of all elements in [0, m/2]", sum of the digit squares-distances from the center (m/4,...,m/4) is in the
interval [un — /30, un + v/30]. So, by pigeonhole principle, there exist a squared radius R such that
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where C,, = 1/(3v/30,,,) where g,,, = Zt8mtam —d8m O

The same proof (in fact easier) can be done for odd m > 5.



Theorem 4. Let m > 5 be odd. There exists some C,,, > 0 such that

r3(Z) > Cm (m_"'l) )
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we asymptotically have C,,, ~ TamE




