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Let r3(Zn
4 ) be the largest size of a subset A ⊆ Zn

4 that does not contain a proper arithmetic

progression of length 3. That is, whenever x, y, z ∈ A satisfy x + z = 2y, at least two of x, y, z must

be equal. A recent paper of Elsholtz and Pach (2020) deeply explores the lower bounds for r3(Zn
4 ) by

extending the well-known constructions for Z, and gives the exact value of r3(Zn
4 ) for n ≤ 5. The result

that we are interested in today is the following asymptotic bound.

Theorem 1. There exists a constant C such that

r3(Zn
4 ) ≥ Cn−1/23n.

We will explore three different constructions giving us three proofs to theorem 1.

1 The First Proof

This proof is the simplest one we are going to see today. Let

S = {(x1, . . . , xn) ∈ {0, 1, 2}n : xi = 1 for m = ⌊n/3⌋ values i} ⊆ Zn
4 .

We claim that S has desired number of elements and in fact it does not even contain three collinear

points. Indeed,

|S| ∼ 22n/3
(

n

n/3

)
∼ 22n/3

√
2πnnn

en
en/3√

2πn/3(n/3)n/3
e2n/3√

2π2n/3(2n/3)2n/3

= Ω(n−1/23n).

Now, suppose to the contrary that S contains three points x, y, z forming a non-trivial arithmetic pro-

gression. Then,

xi = yi = zi or (xi, yi, zi) = (0, 1, 2) or (2, 1, 0) or (2, 0, 2) or (0, 2, 0)

for each coordinate xi, yi, zi of x, y, z. Since the number of 1s in each vector is constant, it follows that

(xi, yi, zi) = (0, 1, 2) or (2, 1, 0) is impossible. Therefore, we must have x = z.
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2 Second Proof

This construction will make use of binary codes with certain minimum distances. For positive integers

m and d with m ≥ d, let A(m, d) denote the largest possible size of a code in Fm
2 with minimum hamming

distance at least d. Note that

A(m, 1) = 2m and A(m, 2) = 2m−1.

The main observation is the following:

Theorem 2. For n > 1, we have r3(Zn
4 ) ≥ max0≤t≤n

∑n
i=t+1

(
n
i

)
A(i, i− t).

Proof. For each a ∈ Zn
4 , let T (a) = {i ∈ [n] : ai ∈ {0, 2}} i.e. T (a) records the positions of 0s and 1s. If

a, b, c ∈ {0, 1, 2}n form an arithmetic progression, as we have seen in section 1, we must have

(ai, bi, ci) ∈ {(0, 0, 0), (1, 1, 1), (2, 2, 2), (0, 1, 2), (2, 1, 0), (2, 0, 2), (0, 2, 0)}.

Therefore, a and c only differ at positions i ∈ T (a) \ T (b) and T (a) = T (c) ⊆ T (b).

Fix any t and S ⊆ {0, 1, 2}n be such that

• |T (a)| ≥ t for all a ∈ S, and

• for all T with |T | ≥ t, the set {a ∈ S : T (a) = T} has minimum hamming distance at least

|T | − t+ 1.

Then, if a, b, c ∈ S were to form a proper arithmetic progression, then

d(a, c) ≤ |T (a) \ T (b)| = |T (a)| − |T (b)| ≤ |T (a)| − t

which implies that a = c.

We may construct an explicit example of the set S as follows. For every T ⊆ [n] of size at least

i ≥ t, take a binary code in {0, 2}T of size A(i, i− t) of minimum distance i− t and put 1s in other entries

[n] \ T to get a code AT . Then, let S = ⊔|T |≥tAT satisfies the desired properties and its size meets the

stated lower bound. □

We can easily obtain a bound for r3(Zn
4 ) by substituting a value of t in theorem 2 so that A(i, i−t)

are easy for calculation. One may do this by setting t = ⌈(2n− 5)/3⌉ and get

n∑
i=t+1

(
n

i

)
A(i, i− t) ≥

(
n

t+ 1

)
2t+1 +

(
n

t+ 2

)
2t+1 ∼ 3

2
· 22n/3

(
n

2n/3

)
∼ 9

4
√
π
· 3n√

n
.

3 The Third Proof

This construction mimics Behrend’s construction of projecting a sphere into Z. In fact, we have a

stronger result.
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Theorem 3. Let m ≥ 4 be even. There exists some constant Cm > 0 such that

r3(Zn
m) ≥ Cm√

n

(
m+ 2

2

)n

.

With σm =
√

m4+8m3+4m2−48m
2880 , one can choose Cm = 1

3
√
3σm

. For large m, one has that Cm ∼
8
√
5√

3m2
.

Proof. Define

SR = {(a1, . . . , an) : ai ∈ {0, 1, . . . ,m/2},
n∑

i=1

(
ai −

m

4

)2
= R}.

Then, each SR does not contain a proper 3-term arithmetic progression. Suppose P1, P2, P3 are points

forming an arithmetic progression in SR. For illustration purposes, suppose for now that the i-th coor-

dinates of P1, P2, P3 have the form ai − di, ai, ai + di. Then, we have

n∑
i=1

((
ai + di −

m− 1

4

)2

+

(
ai − di −

m− 1

4

)2

− 2

(
ai −

m− 1

4

)2
)

= 0

and thus
∑n

i=1 2d
2
i = 0. So, the three points are identical. However, in Zn

m for even m, the i-th co-

ordinates may also have the form 0,m/2, 0 or m/2, 0,m/2. The rest of the coordinates have the form

ai − di, ai, ai + di. Then, arguing as before, we can show that di = 0 for all i with coordinates not of the

form m/2, 0,m/2 or 0,m/2, 0. Hence, P1 and P3 are identical, contradiction.

We wish to find a SR with many points. We may do so by first using Chebyshev’s inequality

to determine a range of radii in which majority of the points lie in, then use pigeonhole principle to

pick one of these highly populated spheres. Consider a1, . . . , an to be independent random variables

distributed uniformly over the set {0, 1, . . . ,m/2}. Define the random variables

Yi = ai −
m

4
, Zi = Y 2

i , Z = Z1 + · · ·+ Zn

for i ∈ {1, . . . , n}. Then, calculations show that

E(Zi) =
1

48
m2 +

1

12
m

E(Z) = nE(Zi)√
Var (Zi) =

√
m4 + 8m3 + 4m2 − 48m

2880√
Var (Z) =

√
n ·
√

Var (Zi)

Write µ = E(Z) and σ =
√

Var (Z). By Chebyshev’s inequality, we can see that for at least two-thirds

of all elements in [0,m/2]n, sum of the digit squares-distances from the center (m/4, . . . ,m/4) is in the

interval [µn−
√
3σ, µn+

√
3σ]. So, by pigeonhole principle, there exist a squared radius R such that

|SR| ≥
1√
3σ

(
m+ 2

2

)n

=
Cm√
n

(
m+ 2

2

)n

where Cm = 1/(3
√
3σm) where σm = m4+8m3+4m2−48m

2880 . □

The same proof (in fact easier) can be done for odd m ≥ 5.
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Theorem 4. Let m ≥ 5 be odd. There exists some Cm > 0 such that

r3(Zn
m) ≥ Cm√

n

(
m+ 1

2

)n

.

Moreover, with σm =
√

m4+4m3−14m2−36m+45
2880 , we may take Cm = 1

3
√
3σm

. For increasing odd m,
we asymptotically have Cm ∼ 8

√
5√

3m2
.
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