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The classic Roth’s theorem [4] states that any subset A ⊆ N of positive upper density contains

an arithmetic progression of length 3. One way to improve the notion of ‘positive upper density’ is

to introudce the number r3(n), the size of the largest subset of {1, 2, . . . , n} not containing a 3-term

arithmetic progression. Under this notation, the classic Roth’s theorem says that r3(n) = o(n). This

bound has been improved over time with the current world record being

r3(n) ≤
n

exp(c(log n)1/11)

for some absolute constant c > 0, achieved by Bloom, Sisask, Kelly and Meka in 2023 February (preprint)

[1]. Nevertheless, the goal of this presentation is to discuss some extensions of Roth’s theorem for gen-

eral groups.

The main highlight of this presentation is the following theorem, proven in [6] which we will

present in section 2. Here, Syl2(K) denotes a (possibly trivial) Sylow 2-subgroup of K.

Theorem 1. (Roth’s Theorem for Finite Groups) For every ε > 0, there is a positive integer M for
every group G having a subgroup K with [K : Syl2(K)] ≥ M , any subset S ⊂ G with |S| ≥ ε|G|
contains three distinct elements b, db, d2b where d ∈ K.

Another way to generalize an arithmetic progression into general groups is as a triplet (x, y, z) ∈
G3 of group elements such that xz = y2. One weakness of such generalization is that the property of

being AP-free is no longer translation invariant: if xz = y2, it is not necessarily true that (ax)(az) = (ay)2

for any a ∈ G. The following theorems proven in [5], although we are not discussing today, are worth

of mentioning when it comes to this direction.

Theorem 2. Let G be a finite group of order n. Let A1, . . . , Am with m ≥ 2 be sets of elements of
G and let g be an arbitrary element of G. If the equation

x1x2 . . . xm = g (eq. 1)

has o(nm−1) solutions with xi ∈ Ai, then there are subsets A′
i ⊆ Ai with |Ai \A′

i| = o(n) such that
there is no solution of the equation (eq. 1) with xi ∈ A′

i.

Corollary 3. Let G be a finite group of odd order n and A ⊆ G be a subset. If the number of solutions
to the equation xz = y2 with x, y, z ∈ A is o(n2), then the size of A is o(n).
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1 Necessary Tools

The central tool used to prove the theorems mentioned above is the triangle removal lemma (more

generally, hypergraph removal lemma) from extremal graph theory.

Theorem 4. (Triangle Removal Lemma, version 1) For every ε > 0, there exists δ > 0 such that
every graph Γ containing at most δ|Γ|3 triangles can be made triangle-free by removing at most ε|Γ|2

edges.

Vaguely saying, every graph with o(|Γ|3) triangles can be made triangle free by removing o(|Γ|2)
edges. One possible approach to prove theorem 4 is via Szemeredi’s Regularity Lemma (see for example

[7]). But to my knowledge, this theorem is surprisingly difficult to prove. The version of triangle

removal lemma we are going to be using today is the following.

Theorem 5. (Triangle Removal Lemma, version 2) For every ε > 0, there exists δ > 0 such that
every graph Γ containing at least ε|Γ|2 edge-disjoint triangles will also contain at least δ|Γ|3 triangles.

First, let’s see why these two versions are equivalent. Suppose theorem 4 is correct, and suppose

we are given ε > 0. Choose the δ > 0 guaranteed by theorem 4 with ε/2 in place of ε. Then, G must

contain more than δ|Γ|3 triangles or otherwise, it can be made triangle free by removing ε|Γ|2/2 edges.

However, this is impossible as we need to remove at least one edge from ε|Γ|2 edge-disjoint triangles to

make Γ triangle-free. Now, suppose theorem 5 is correct, and suppose we are given ε > 0. Take δ > 0

guaranteed by theorem 5 with ε/3 in place of ε. Consider the maximal collection ∆ of edge-disjoint

triangles in Γ. By theorem 5, we know that |∆| ≤ ε|Γ|2/3. By maximality, every triangle shares an edge

with some triangle in ∆. Thus, removing all 3|∆| ≤ ε|Γ|2 edges from all triangles in ∆ will make Γ

triangle-free.

Triangle removal lemma is notorious for having terrible bounds (i.e. bounds of δ in terms of

ε) and thus putting a curse on every proof that makes use of the lemma. One known upper bound for

1/δ is that it is bounded below by a tower of twos of height O(log(1/ε)) and the current best known

lower bound for 1/δ is that it is bounded above by ε−O(log(1/ε)). Hence, there is a ginormous difference

between lower and upper bounds.

Another tool that we will need are the two classic lemmas of Erdös and Strauss stating about

the existence of large abelian subgroups in given finite groups. We shall state them here without proof.

Lemma 6. (Erdös and Strauss [2]) Let G be a finite group of order n. Then, G contains an abelian
p-group P of order log n− o(log n) as a subgroup.

The bound in lemma 6 is not tight. In fact, Pyber [3] has shown that there is a universal constant

c such that every group of order n contains an abelian subgroup of order at least 2c
√
logn. This bound is

essentially tight.

2 Patterns in Large Subsets of G×G

By a natural application of triangle removal lemma, we can prove the following lemma.
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Lemma 7. For every ε > 0, there is a positive integer m such that whenever H is a subgroup of a
finite group G with |H| ≥ m, any set S ⊆ G × G with |S| ≥ ε|G|2 contains three elements (a, b),
(ad, b) and (a, db) where d ∈ H.

Proof. For the given ε > 0, take the δ guranteed by theorem 5. Pick m so that the inequality δX3 > εX2

holds for all X ≥ m. Now, note that there exists l, r ∈ G such that

|(lH ×Hr) ∩ S| ≥ ε|H|2.

To see this, note that there are (|G|/|H|)2 possible sets of the form lH ×Hr and therefore, one of them

contains at least
|S|

|G|2/|H|2
=

|S|
|G|2

· |H|2 ≥ ε|H|2

elements of S. Now, cerate a tripartite graph Γ with three vertex partitions: lH , Hr and lHr. We shall

add edges to Γ as follows: go through all possible pairs (g1, g2) ∈ (lH ×Hr) ∩ S one by one. For each

such pair, add the edges (g1, g2) from lH to Hr, (g1g2, g2) from lHr to Hr and (g1g2, g1) from lHr to lH .

So there can be two types of triangles in Γ: those formed by the three edges that we add in some step

(which we will call original) triangles and other triangles (g1, g2, g3) with g1g2 ̸= g3. Note that Γ contains

at least |S| ≥ ε|G|2 original triangles which are all edge-disjoint. Therefore, by theorem 5, it contains

δ|G|3 > ε|G|2 triangles. In particular, it contains an non-original triangle. Thus, it contains 3 distinct

triangles (lh1, h2r, lh3r), (lh1, h4r, lh3r) and (lh5, h2r, lh3r) with each hi ∈ H satisfying

h1h2 ̸= h3, h3 = h1h4 = h5h2 and (lh1, h2r), (lh1, h4r), (lh5, h2r) ∈ S

The conclusion follows by choosing a = lh1, b = h2r and d = h−1
1 h5 = h4h

−1
2 . □

lh3r

lh1

lh3 h2r

h4r

We may now prove the next theorem, the proof of which can yield us theorem 1.

Theorem 8. For every ε > 0, there is a positive integer n such that for any finite group G with order
at least n, any set S ⊆ G×G with |S| ≥ ε|G|2 contains three elements (a, b), (a, c) and (e, f) such
that ab = ec and ac = ef .

Proof. Let ε > 0 be given. We will make the choice of n later. By lemma 6, we know that G contains

3



an abelian group H of size at least log(n). Let l, r ∈ G be such that

|(lH ×Hr) ∩ S| ≥ ε|H|2.

Write L = lH , R = Hr, K = lHr and construct the tri-partite graph Γ on vertex sets L,R and K as

in lemma 7. Then, by theorem 5, Γ contains at least δ′|H|3 non-original triangles where δ′ is a constant

only depending on ε and δ. Now, for each non-original triangle T , we can find three distinct triangles

(aT , bT , cT ), (xT , bT , cT ) and (aT , yT , cT ) such that

aT bT ̸= cT , cT = xT bT = aT yT and (aT , bT ), (xT , bT ), (aT , yT ) ∈ S.

Thus, there is a vertex x ∈ L such that x = xT for at least δ′|H|2 non-original triangles T . We now

construct a new tri-partite graph Γ′ whose vertex set is A,B,C where A,B and C are the sets of elements

of the form aT , aT bT and cT respectively where T is a non-original triangle with x = xT . We then add

the edges (aT , aT bT ), (aT bT , cT ) and (aT , cT ). Note that any two of aT , aT bT and cT determine the other

due to the relations:

cT = xbT = aT yT .

Therefore, Γ′ contains at least δ′|H|2 triangles and again by theorem 5, if |H| is large enough, there exist

a triangle which is not of the form (aT , aT bT , cT ) for some non-original triangle T with x = xT . Suppose

that the edges of this triangle in Γ′ are determined by distinct triangles T1, T2, T3 in Γ with x = xTi
for

i = 1, 2, 3 and

aT1
= aT3

, cT2
= cT3

, aT1
bT1

= aT2
bT2

.

This is all we need, so it’s time to wrap up. We claim that choosing

(a, b) = (aT1
, yT1

), (a, c) = (aT3
, yT3

) and (e, f) = (aT2
, yT2

)

does the job. Indeed, they all belong to S and

ac = aT1yT3 = aT3yT3 = cT3 = cT2 = aT2yT2 = ef.

To prove the remaining identity ab = ec, note that it is equivalent to

cT1
= aT2

a−1
T1

cT3
.

Since cT1
= xbT1

and cT3
= xbT3

, it suffices to show that

xbT1 = aT2a
−1
T1

xbT3 .

Now, write aT1
= lα1, aT2

= lα2, x = lαx, bT1
= β1r and bT3

= β3r where α1, α2, αx, β1 and β3 are

elements of H . Then, we need to show that

lαxβ1r = lα2α
−1
1 αxβ3r.

But, this is true since H is abelian and aT1
bT1

= aT2
bT2

. □

Note that the terms b, c, f form an arithmetic progression with common difference e−1a ∈ H .

The only thing we need to worry now with regards to proving theorem 1 is when e−1a has degree 2.
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This condition will be ruled out if we can choose H to be an arbitrarily large abelian subgroup of odd

order. Here are the details:

Proof of Theorem 1. For an arbitrary ε > 0, and m be the positive integer guaranteed by lemma 7 with

S×S replacing S. Let K be any subgroup of G with |K : Syl2(K)| ≥ M . Then, by prime factorization of

|K| we can see that K contains a p-group P of order at least (logM)/2 with p ̸= 2 for sufficiently large

M . But, by lemma 6, P has an abelian subgroup of size at least (log |P |)/2 for some absolute constant

C > 0. Therefore, K contains an abelian subgroup H with

|H| ≥ (log |P |)/2 ≥ ((log logM)− log 2)/2.

We can now follow the proof of lemma 8 to prove our theorem. □

The author of [6] conjectured that the following stronger version of theorem 8 holds:

Conjecture 9. For every ε > 0, there is a positive integer n such that if G is a finite group of order
|G| ≥ n, then any set S ⊆ G × G with |S| ≥ ε|G|2 contains four elements (a, b), (a, c), (e, c) and
(e, f) such that ab = ec and ac = ef .

3 Bonus: Proof of Roth’s Theorem

To illustrate the power of triangle removal lemma, we will prove Roth’s theorem i.e. r3(n) = o(n) using

lemma 5.

Theorem 10. (Roth’s Theorem) Any subset A ⊆ N0 of positive upper density contains an arithmetic
progression of length 3.

Proof. (from [7]) Suppose that An = A ∩ {0, 1, 2, . . . , n} does not contain a 3-term AP for all positive

integers n, and suppose to the contrary that there is some ε > 0 such that |An| ≥ εn for sufficiently large

n. We may embed An as a subset of Z/(2n + 1)Z by direct inclusion. Then, An still does not contain a

3-term AP as a subset of Z/(2n+1)Z. From now on, all the operations will be done inside Z/(2n+1)Z.

Construct a tri-partite graph Γ with vertex set X ⊔ Y ⊔ Z where X = Y = Z = Z/(2n + 1)Z. We add

edges in Γ as follows:

• (x, y) ∈ X × Y is an edge iff y − x ∈ An,

• (y, z) ∈ Y × Z is an edge iff z − y ∈ An,

• (z, x) ∈ Z × X is an edge iff (z − x)/2 ∈ An where 1/2 is the multiplicative inverse of 2 in

Z/(2n+ 1)Z.

Now, since y−x, (z−x)/2, z−y form an AP, every triangle in Γ corresponds to a trivial AP in An. More

precisely, (x, y, z) is a triangle if and only if y − x = z − y ∈ An. So, all triangles in Γ are edge disjoint

and there are exactly(!) (2n+1)|An| of them. Hence, for sufficiently large n, by triangle removal lemma,

Γ is going to contain δ(2n+ 1)3 triangles for some δ > 0. But then, |An| ≥ (2n+ 1)2, contradiction. □
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