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Notations

Throughout this presentation,

n is a fixed positive integer,

q is a prime power, and Fq the finite field of order q,

α, β, γ ∈ Fq are such that α+ β + γ = 0.

Definition

A set A ⊆ Fn
q is called a capset if the only solutions (x, y, z) ∈ A3 to the

equation
αx+ βy + γz = 0

are trivial solutions: x = y = z.

Remark

The traditional definition for a capset takes α = β = 1 and γ = −2 i.e. a
capset is a set the does not contain a 3-term arithmetic progression.
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The Problem and Our Goal

Problem (Capset Problem)

Does there exist a constant c < q such that

|A| = O(cn)

where A is the largest capset of Fn
q?

The answer turns out to be positive, proven by Ellenberg and Gijwijt in
2017 using the Croot-Lev-Pach polynomial method. The main goal of
this presentation is to prove the following theorem:

Theorem (Ellenberg, Gijwijt)

Let A ⊆ Fn
q be a capset. Then,

|A| ≤ 3N

where N is the number of monomials xd11 xd22 . . . xdnn such that di ≤ q − 1
for each i ∈ {1, . . . , n} and d1 + · · ·+ dn ≤ (q − 1)n/3.
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Terry’s Reformulation

We will use the symmetric reformulation of the proof written by Terrence
Tao on his blogpost. First of all, note the following trivial preposition:

Preposition

A set A ⊆ Fn
q is a capset if and only if

δ0(αx+ βy + γz) =
∑
a∈A

δa(x)δa(y)δa(z) (⋆)

for all (x, y, z) ∈ A3.

(⋆) can be thought of as identity of functions A3 → Fq. We will come up
with a notion of ‘rank ’ so that rank of RHS is |A| and that of LHS is
≤ 3N.
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Defining rank-one

From now on, k ≥ 2 is a positive integer.

Definition

For a set A ⊆ Fn
q, a non-zero function φ : Ak → Fq is called

slice-rank-one if it has the form:

φ(x1, . . . , xk) = f (x1, . . . , xi−1, xi+1, . . . , xk)g(xi)

for some 1 ≤ i ≤ k and functions f : Ak−1 → Fq, g : A → Fq.

Example

The function (x, y, z) 7→ (x1y2 + x32 y
2
1 )z

2
1 z

3
2 is slice-rank-one.

The function
(x, y, z) 7→ δa(x)δa(y)δa(z)

is slice-rank-one.
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Slice-rank-one is same as matrix rank one

Example

For k = 2, the function φ : A2 → Fq can be thought of as an |A| × |A|
matrix 

φ(a1, a1) φ(a1, a2) · · · φ(a1, a|A|)
φ(a2, a1) φ(a2, a2) · · · φ(a2, a|A|)

...
...

. . .
...

φ(a|A|, a1) φ(a|A|, a2) · · · φ(a|A|, a|A|)


where A = {a1, . . . , a|A|}. When φ(x, y) = f (x)g(y), this becomes:

f (a1)g(a1) f (a1)g(a2) · · · f (a1)g(a|A|)
f (a2)g(a1) f (a2)g(a2) · · · f (a2)g(a|A|)

...
...

. . .
...

f (a|A|)g(a1) f (a|A|)g(a2) · · · f (a|A|)g(a|A|)


which has rank 1 as a matrix if φ is non-zero.
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What is slice-rank

Motivated by our previous example, we can define the slice-rank for
general k ≥ 2 as follows:

Definition

The slice-rank of a non-zero function φ : Ak → Fq is the minimum
number of slice-rank-one functions Ak → Fq whose sum is φ. We write
the slice-rank of φ by rsl(φ). If φ ≡ 0, we define rsl(φ) = 0.

Example

Slice rank of φ : A2 → Fq is the same as rank of the corresponding
|A| × |A| matrix induced by φ.

Slice rank of
(x, y, z) 7→

∑
a∈A

δa(x)δa(y)δa(z)

is ≤ |A|.
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Slice-rank of diagonal ‘matrices’

Definition

A function φ : Ak → Fq is called diagonal if φ(x1, . . . , xk) ̸= 0 only if
x1 = · · · = xk.

Theorem

For a diagonal function φ, rsl(φ) = |Supp(φ)|. In particular, slice rank of

(x, y, z) 7→
∑
a∈A

δa(x)δa(y)δa(z)

is |A|.

Proof is standard-linear-algebra flavoured and not very interesting. We
will come back later after discussing more interesting stuff...
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What’s next?

Recall our little identity that checks whether or not A ⊆ Fn
q is a capset:

Preposition

A set A ⊆ Fn
q is a capset if and only if

δ0(αx+ βy + γz) =
∑
a∈A

δa(x)δa(y)δa(z) (⋆)

for all (x, y, z) ∈ A3.

And also the main theorem we want to prove:

Theorem (Ellenberg, Gijwijt)

Let A ⊆ Fn
q be a capset. Then,

|A| ≤ 3N

where N is the number of monomials xd11 xd22 . . . xdnn such that di ≤ q − 1
for each i ∈ {1, . . . , n} and d1 + · · ·+ dn ≤ (q − 1)n/3.
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Rank of δ0(αx+ βy + γz)

Lemma

Let φ : A3 → Fq given by

φ(x, y, z) = δ0(αx+ βy + γz).

Then, rsl(φ) ≤ 3N where N is the number of monomials xd11 xd22 . . . xdnn
such that di ≤ q − 1 for each i ∈ {1, . . . , n} and
d1 + · · ·+ dn ≤ (q − 1)n/3.
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Proof

We want to rewrite φ as sum of ≤ 3N slice-rank-one functions. So,
define a polynomial p ∈ Fq[x1, . . . , xn, y1, . . . , yn, z1, . . . , zn] by

p :=
n∏

i=1

(1− (αxi + βyi + γzi )
q−1).

Note that p as a function A3 → Fq is the same as φ. Now, we expand p
by multiplying everything out and it will look something messy like this:∑

i1,...,kn∈Z≥0

i•,j•,k•≤q−1
i1+···+kn≤n(q−1)

Ci1···knx
i1
1 . . . x inn y

j1
1 . . . y jn

n z
k1
1 . . . zknn .
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Proof (continued)

∑
i1,...,kn∈Z≥0

i•,j•,k•≤q−1
i1+···+kn≤n(q−1)

Ci1···knx
i1
1 . . . x inn y

j1
1 . . . y jn

n z
k1
1 . . . zknn . (1)

Now, we want to regroup the terms. For each term, since
i1 + · · ·+ kn ≤ n(q − 1), at least one of the following quantities is at
most n(q − 1)/3:

i1 + · · ·+ in, j1 + · · ·+ jn, k1 + · · ·+ kn.

So, we can collect the terms into three (not necessarily
mutually-exclusive) types:

terms with i1 + · · ·+ in ≤ n(q − 1)/3,

terms with j1 + · · ·+ jn ≤ n(q − 1)/3,

terms with k1 + · · ·+ kn ≤ n(q − 1)/3.
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Proof (continued)

terms with i1 + · · ·+ in ≤ n(q − 1)/3,

terms with j1 + · · ·+ jn ≤ n(q − 1)/3,

terms with k1 + · · ·+ kn ≤ n(q − 1)/3.

Regrouping the terms according to their types (choose randomly if the
term is in more than one type), we would have written (1) as sum of
≤ 3N expressions (recall that N is the number of monomials
xd11 xd22 . . . xdnn such that di ≤ q − 1 for each i ∈ {1, . . . , n} and
d1 + · · ·+ dn ≤ (q − 1)n/3). Since each of these expressions is
slice-rank-one and p agrees with φ on A3,

rsl(φ) ≤ 3N.



Introduction Slice-rank Proof of the Main Theorem Aftermath Appendix

Why should N be small?

Now that we have |A| ≤ 3N, we only need to see why N = O(cn) for
some constant c < q. Intuition: If we uniformly choose a random
monomial from

S = {xd11 . . . xdnn : 0 ≤ di ≤ q − 1 for i = 1, . . . , n},

then, the expected degree is n(q − 1)/2 which is far from n(q − 1)/3.
Formally, let d = Uniform({0, 1, . . . , q − 1}) be a discrete random
variable and d1, d2, . . . be i.i.d. copies of d . Then,

P
(
d1 + · · ·+ dn ≤ n(q − 1)

3

)
=

N

qn
.

Note that Law of Large Numbers is already giving us N = o(qn), but we
need to get a more precise bound.



Introduction Slice-rank Proof of the Main Theorem Aftermath Appendix

Elementary Proof of N = O(cn)

First, note that

N =

∣∣∣∣∣{(d1, . . . , dn) : 0 ≤ di ≤ q − 1,
n∑

i=1

di ≤
n(q − 1)

3
}

∣∣∣∣∣
=

∑
m0,...,mq−1

m0+m1+···+mq−1=n
m1+2m2+3m3+···+(q−1)mq−1≤n(q−1)/3

n!

m0!m1! · · ·mq−1!
.

Therefore, for all 0 ≤ x ≤ 1,

Nx
n(q−1)

3 ≤
∑
···

n!

m0!m1! · · ·mq−1!
xm1+2m2+···+(q−1)mq−1

≤ (1 + x + x2 + · · ·+ xq−1)n

Hence,

N ≤ inf
0≤x≤1

(
1 + x + x2 + · · ·+ xq−1

x (q−1)/3

)n

< cn.
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Slice rank of diagonal ‘matrices’

Now, let us present the proof of the following theorem:

Theorem

For a diagonal function φ : Ak → Fq,

rsl(φ) = |Supp(φ)|.
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Proof

We induct on k. Base case k = 2 is already done as an example. It
suffices to deal with the case where φ is non-zero on the diagonal since
slice-rank does not increase under restriction:
If A1 ⊆ A, and φ1 = φ|Ak

1
, then

rsl(φ1) ≤ rsl(φ).

Suppose to the contrary that φ : Ak → Fq can be written as sum of less
than m < |A| slice-rank-one functions.
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Proof (page 2)

Suppose that φ : Ak → Fq can be written as sum of m slice-rank-one
functions:

φ = φ1 + · · ·+ φm.

Suppose that φ1, . . . , φr separates the variable x1 i.e.

φi (x1, . . . , xk) = fi (x2, . . . , xk)gi (x1), i = 1, . . . , r

for some r ̸= 0 (WLOG), fi : A
k−1 → Fq and gi : A → Fq. Define V to

be the ‘orthogonal complement’ of gi ’s i.e.

V := {h : A → Fq|
∑
x1∈A

h(x1)gi (x1) = 0 for all i = 1, . . . , r}.
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Proof (page 3)

Take h ∈ V with maximal support, and consider:∑
x1∈A

h(x1)φ(x1, . . . , xk) =
∑
x1∈A

h(xi )(φ1 + · · ·+ φr )(x1, . . . , xk)

+
∑
x1∈A

h(xi )(φr+1 + · · ·+ φm)(x1, . . . , xk).

Now, both sides become functions of x2, . . . , xk . But,

rsl(RHS) ≤ m − r , rsl(LHS) = |Supp(h)|.

So, it suffices to show that |Supp(h)| ≥ |A| − r .
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Proof (page 4)

We will show that |Supp(h)| ≥ dimV ≥ |A| − r . The latter inequality
can be proven by staring at the definition of V :

V := {h : A → Fq|
∑
x1∈A

h(x1)gi (x1) = 0 for all i = 1, . . . , r}.

For the former, if | dimV | > |Supp(h)|, then the linear map

V → F|Supp(h)|
q given by evaluation at points of Supp(h) ⊆ A cannot be

injective. Thus, we would be able to find a non-zero h′ ∈ V that vanishes
on Supp(h). In that case,

|Supp(h + h′)| > |Supp(h)|

contradicting the maximality.
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