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Notations

Throughout this presentation,
@ nis a fixed positive integer,
@ g is a prime power, and I, the finite field of order g,
° o, 3,7 € Fy are such that « + 3+ v = 0.

Definition
A set AC F7 is called a capset if the only solutions (x,y,z) € A% to the

equation
ax+ By +~vz=0

are trivial solutions: x =y = z.

Remark

The traditional definition for a capset takesa = =1and y=—2i.e. a
capset is a set the does not contain a 3-term arithmetic progression.

V.
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The Problem and Our Goal

Problem (Capset Problem)

Does there exist a constant ¢ < q such that
Al = 0O(c")

where A is the largest capset of Fg?

The answer turns out to be positive, proven by Ellenberg and Gijwijt in
2017 using the Croot-Lev-Pach polynomial method. The main goal of
this presentation is to prove the following theorem:

Theorem (Ellenberg, Gijwijt)
Let A C ]Fg be a capset. Then,

Al < 3N

where N is the number of monomials x"x3 ... x% such that d; < q — 1

for each i € {1,...,n} and dy +--- + d, < (¢ —1)n/3.
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Terry's Reformulation

We will use the symmetric reformulation of the proof written by Terrence
Tao on his blogpost. First of all, note the following trivial preposition:

Preposition

Aset AC IFZ is a capset if and only if

So(oax + By +72) = > _ 6a(x)5a(y)da(2) (%)

acA

for all (x,y,z) € A%,

v

(x) can be thought of as identity of functions A> — F,. We will come up
with a notion of ‘rank ' so that rank of RHS is |A| and that of LHS is
< 3N.
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Defining rank-one

From now on, k > 2 is a positive integer.

Definition
For a set A C IFS, a non-zero function ¢ : Ak Fg is called
slice-rank-one if it has the form:

O(X1, ., xk) = F(X1, .0, Xim1, Xig 1, - - -5 Xk)8(Xi)

for some 1 < i < k and functions f : A"1 - F,, g: A — F,.

Example
o The function (x,y,z) — (x1y2 + x3y7)z?Z; is slice-rank-one.
@ The function
(X7 Y, Z) = (sa(X)(Sa(y)éa(Z)

is slice-rank-one.
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Slice-rank-one is same as matrix rank one

Example

For k = 2, the function ¢ : A> — FF, can be thought of as an |A| x |A]
matrix

e(ar,a1)  p(a,a2) - @(ar,aa)
p(az,a1)  p(az,a) - @(az,a.)
v(aja,a1) (ajapa2) - w(aja)naa)

where A = {ay,...,aa}. When ¢(x,y) = f(x)g(y), this becomes:

f(ai)g(a1) f(ai)g(az) --- f(a1)g(aa)
f(a2)g(a1) f(az)g(a2) --- f(az)g(a|A|)
f(a\A|)g(al) f(alA\jg(a2) - f(a\Al);g(alA\)

which has rank 1 as a matrix if ¢ is non-zero.
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What is slice-rank

Motivated by our previous example, we can define the slice-rank for
general k > 2 as follows:

Definition

The slice-rank of a non-zero function ¢ : Ak — F, is the minimum
number of slice-rank-one functions A* — F, whose sum is ¢. We write
the slice-rank of ¢ by rg(®). If ¢ =0, we define ry(¢) = 0.

Example

o Slice rank of ¢ : A> — F, is the same as rank of the corresponding
|A| x |A| matrix induced by ¢.

(x,y,2z r—)Zé (2)

acA

@ Slice rank of

is < |A].
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Slice-rank of diagonal ‘matrices’

Definition
A function ¢ : AX — F, is called diagonal if ¢(x1,...,xk) # 0 only if
X] = -+ = Xg.

Theorem

For a diagonal function ¢, ry(p) = |Supp(p)|. In particular, slice rank of

(x,y,2) = Z da(x)da(y)da(z)

acA

is |A].

Proof is standard-linear-algebra flavoured and not very interesting. We
will come back later after discussing more interesting stuff...
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What's next?

Recall our little identity that checks whether or not A C Fg is a capset:

Preposition

A set AC Fg is a capset if and only if

So(ax+ By +72) = D 6a(x)da(y)da(2) ()

acA

for all (x,y,z) € A3.

And also the main theorem we want to prove:

Theorem (Ellenberg, Gijwijt)
Let A C ]FZ be a capset. Then,

Al < 3N

where N is the number of monomials x{"x3 ... x% such that d; < q — 1
foreachie{l,...,n} anddi +---+d, < (g —1)n/3.
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Rank of dp(ax + By + vz)

Lemma
Let ¢ : A3 — T, given by
¢(x,y,z) = do(ax + By +7z).

Then, rg(p) < 3N where N is the number of monomials Xflxzd2 ... xGn
such that d; < q — 1 for each i € {1,...,n} and
di+---+d, <(qg—1)n/3.
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We want to rewrite ¢ as sum of < 3N slice-rank-one functions. So,
define a polynomial p € Fg[x1,..., Xn, Y1, -, ¥n, 21, ., Zn] by

n

p =]~ (axi + Byi +vz)7 ).

i=1

Note that p as a function A3 — F, is the same as ¢. Now, we expand p
by multiplying everything out and it will look something messy like this:

f i i\ J1 Jn ki kn
E Gt Xt - Xydt o ylz Lz,
ity kn€ZL>0
iosjoske<q—1
ii+-+ka<n(q—1)
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Proof (continued)

s i1 i 1 Jn K1 k

E Ciroky X1 oo X ydt o ylnz oz, (1)
ity...;kn€ZLx>o

iosjo ke <q—1

n+-+ko<n(q—1)

Now, we want to regroup the terms. For each term, since
i+ -+ ky, < n(g—1), at least one of the following quantities is at
most n(qg — 1)/3:

WAoot iAot kit 4 K

So, we can collect the terms into three (not necessarily
mutually-exclusive) types:

e terms with iy + -+ + i, < n(qg — 1)/3,
e terms with j; + -+ j, < n(g —1)/3,
@ terms with ki + -+ + k, < n(q — 1)/3.
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Proof (continued)

e terms with iy +--- 4+ i, < n(q —1)/3,
o terms with jy +--- 4 j, < n(qg —1)/3,
e terms with ky + -+ + k, < n(qg — 1)/3.

Regrouping the terms according to their types (choose randomly if the
term is in more than one type), we would have written (1) as sum of
< 3N expressions (recall that N is the number of monomials

xPx$? ... xd such that d; < g — 1 for each i € {1,...,n} and

di+ -+ d, <(g—1)n/3). Since each of these expressions is
slice-rank-one and p agrees with ¢ on A3,

rsi(¢) < 3N.



Why should N be small?

Now that we have |A| < 3N, we only need to see why N = O(c") for
some constant ¢ < g. Intuition: If we uniformly choose a random
monomial from

S={x"..x":0<d<q—1fori=1,...,n},

then, the expected degree is n(q — 1)/2 which is far from n(q — 1)/3.
Formally, let d = Uniform({0,1,...,q — 1}) be a discrete random
variable and di, d»,... be i.i.d. copies of d. Then,

[P(d1_~_...+dn§n(q3_1)>:/\l_

Note that Law of Large Numbers is already giving us N = o(g"), but we
need to get a more precise bound.
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Elementary Proof of N = O(c")

First, note that

= {(dl"“’dn)ZOSdeq—l,Zdigw}
i=1

> g
molml! s mq_l!

mo,..., mg—1
mo+mi+---+mg_1=n
m+2my+3ms+--+(g—1)mg_1<n(q—1)/3

Therefore, for all 0 < x <1,

(a=1) n!
NXn q3 < E | ' |Xm1+2mz+-~+(q—l)mq_1
mo:my:---Mg_1

S@A+x+x2+ X771

Hence,

N < inf

0<x<1

Lhx+x2 4+ x71\" |
X173 s
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Slice rank of diagonal ‘matrices’

Now, let us present the proof of the following theorem:

Theorem

For a diagonal function ¢ : A — F,

rsi(p) = |Supp()]-




We induct on k. Base case k = 2 is already done as an example. It
suffices to deal with the case where ¢ is non-zero on the diagonal since
slice-rank does not increase under restriction:

If A1 - A, and Y1 = (p|All<, then

rsl(‘Pl) S rsl(@)-

Suppose to the contrary that ¢ : AKX — F, can be written as sum of less
than m < |A| slice-rank-one functions.
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Proof (page 2)

Suppose that ¢ : AK — F4 can be written as sum of m slice-rank-one
functions:
p=p1t -+ Om

Suppose that @1, ..., @, separates the variable x; i.e.
QD,'(Xl,...7X,¢():7‘;'(X2,...,X/<)g,'(xl)7 I':L...,I‘

for some r # 0 (WLOG), f; : Ak~ — F, and g; : A — Fy. Define V to
be the ‘orthogonal complement’ of g;'s i.e.

Vi={h:A->TFg Z h(x1)gi(x1) =0forall i=1,...,r}.
x1EA
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Proof (page 3)

Take h € V with maximal support, and consider:

D hxa)p(xe, %) = D hxi) (o1 4 o) (X, %)
x1€EA x1EA
+ Zh §0r+1+ +(Pm)(x17'--vxk)'
x1EA
Now, both sides become functions of x5, ..., x,. But,

rsf(RHS) < m —r, ry(LHS) = |Supp(h)|.

So, it suffices to show that |Supp(h)| > |A| — r.
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Proof (page 4)

We will show that |Supp(h)| > dim V > |A| — r. The latter inequality
can be proven by staring at the definition of V:

V={h:A—=F h(x1)gi(x1) =0forall i=1,... r}.
q
x1 EA

For the former, if | dim V| > |Supp(h)|, then the linear map

V — F*PPl given by evaluation at points of Supp(h) C A cannot be
injective. Thus, we would be able to find a non-zero ' € V that vanishes
on Supp(h). In that case,

|Supp(h + h")| > [Supp(h)|

contradicting the maximality.
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