		Proof of the Main Theorem	Aftermath	Appendix
000	0000	00000	00	00000

The Symmetric Formulation of Ellenberg-Gijwijt's Bound on Capset Problem

Terrence Tao

January 4, 2024

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
●00	0000		OO	00000
Notations				

Throughout this presentation,

- *n* is a fixed positive integer,
- q is a prime power, and \mathbb{F}_q the finite field of order q,
- $\alpha, \beta, \gamma \in \mathbb{F}_q$ are such that $\alpha + \beta + \gamma = 0$.

Definition

A set $A \subseteq \mathbb{F}_q^n$ is called a capset if the only solutions $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in A^3$ to the equation

$$\alpha \mathbf{x} + \beta \mathbf{y} + \gamma \mathbf{z} = \mathbf{0}$$

are trivial solutions: $\mathbf{x} = \mathbf{y} = \mathbf{z}$.

Remark

The traditional definition for a capset takes $\alpha=\beta=1$ and $\gamma=-2$ i.e. a capset is a set the does not contain a 3-term arithmetic progression.

Introduction ೧●೧	Slice-rank 0000	Proof of the Main Theorem	Aftermath 00	Appendix ೧೧೧೧೧
The Prob	lem and Ou	ır Goal		

Problem (Capset Problem)

Does there exist a constant c < q such that

 $|A| = O(c^n)$

where A is the largest capset of \mathbb{F}_q^n ?

The answer turns out to be positive, proven by Ellenberg and Gijwijt in 2017 using the Croot-Lev-Pach polynomial method. The main goal of this presentation is to prove the following theorem:

Theorem (Ellenberg, Gijwijt)

Let $A \subseteq \mathbb{F}_q^n$ be a capset. Then,

$$|A| \leq 3N$$

where N is the number of monomials $x_1^{d_1}x_2^{d_2}\dots x_n^{d_n}$ such that $d_i \leq q-1$ for each $i \in \{1, \dots, n\}$ and $d_1 + \dots + d_n \leq (q-1)n/3$.

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
○○●	0000		OO	00000
Terry's Refo	rmulation			

We will use the symmetric reformulation of the proof written by Terrence Tao on his blogpost. First of all, note the following trivial preposition:

Preposition $A \text{ set } A \subseteq \mathbb{F}_q^n \text{ is a capset if and only if}$ $\delta_0(\alpha \mathbf{x} + \beta \mathbf{y} + \gamma \mathbf{z}) = \sum_{\mathbf{a} \in A} \delta_{\mathbf{a}}(\mathbf{x}) \delta_{\mathbf{a}}(\mathbf{y}) \delta_{\mathbf{a}}(\mathbf{z})$ (*) for all $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in A^3$.

(*) can be thought of as identity of functions $A^3 \to \mathbb{F}_q$. We will come up with a notion of 'rank ' so that rank of RHS is |A| and that of LHS is $\leq 3N$.

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
೧೧೧	●000		00	00000
Defining	rank-one			

From now on, $k \ge 2$ is a positive integer.

Definition

For a set $A \subseteq \mathbb{F}_q^n$, a non-zero function $\varphi : A^k \to \mathbb{F}_q$ is called slice-rank-one if it has the form:

$$arphi(\mathsf{x}_1,\ldots,\mathsf{x}_{\mathsf{k}})=f(\mathsf{x}_1,\ldots,\mathsf{x}_{\mathsf{i}-1},\mathsf{x}_{\mathsf{i}+1},\ldots,\mathsf{x}_{\mathsf{k}})g(\mathsf{x}_{\mathsf{i}})$$

for some $1 \leq i \leq k$ and functions $f : A^{k-1} \to \mathbb{F}_q$, $g : A \to \mathbb{F}_q$.

Example

- The function $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto (x_1y_2 + x_2^3y_1^2)z_1^2z_2^3$ is slice-rank-one.
- The function

$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto \delta_{\mathbf{a}}(\mathbf{x}) \delta_{\mathbf{a}}(\mathbf{y}) \delta_{\mathbf{a}}(\mathbf{z})$$

is slice-rank-one.

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
೧೧೧	∩●∩∩		00	00000

Slice-rank-one is same as matrix rank one

Example

For k = 2, the function $\varphi : A^2 \to \mathbb{F}_q$ can be thought of as an $|A| \times |A|$ matrix $\left[\begin{array}{c} \varphi(\mathbf{a}_1, \mathbf{a}_1) & \varphi(\mathbf{a}_1, \mathbf{a}_2) & \cdots & \varphi(\mathbf{a}_1, \mathbf{a}_{|A|}) \end{array} \right]$

$$\begin{bmatrix} \varphi(\mathbf{a}_{2}, \mathbf{a}_{1}) & \varphi(\mathbf{a}_{2}, \mathbf{a}_{2}) & \cdots & \varphi(\mathbf{a}_{2}, \mathbf{a}_{|A|}) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi(\mathbf{a}_{|A|}, \mathbf{a}_{1}) & \varphi(\mathbf{a}_{|A|}, \mathbf{a}_{2}) & \cdots & \varphi(\mathbf{a}_{|A|}, \mathbf{a}_{|A|}) \end{bmatrix}$$

where $A = \{\mathbf{a}_1, \dots, \mathbf{a}_{|A|}\}$. When $\varphi(\mathbf{x}, \mathbf{y}) = f(\mathbf{x})g(\mathbf{y})$, this becomes:

$$\begin{bmatrix} f(\mathbf{a}_1)g(\mathbf{a}_1) & f(\mathbf{a}_1)g(\mathbf{a}_2) & \cdots & f(\mathbf{a}_1)g(\mathbf{a}_{|A|}) \\ f(\mathbf{a}_2)g(\mathbf{a}_1) & f(\mathbf{a}_2)g(\mathbf{a}_2) & \cdots & f(\mathbf{a}_2)g(\mathbf{a}_{|A|}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\mathbf{a}_{|A|})g(\mathbf{a}_1) & f(\mathbf{a}_{|A|})g(\mathbf{a}_2) & \cdots & f(\mathbf{a}_{|A|})g(\mathbf{a}_{|A|}) \end{bmatrix}$$

which has rank 1 as a matrix if φ is non-zero.

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
000	00●0		OO	00000
XA/I . 1	10 C			

What is slice-rank

Motivated by our previous example, we can define the slice-rank for general $k \ge 2$ as follows:

Definition

The slice-rank of a non-zero function $\varphi : A^k \to \mathbb{F}_q$ is the minimum number of slice-rank-one functions $A^k \to \mathbb{F}_q$ whose sum is φ . We write the slice-rank of φ by $r_{sl}(\varphi)$. If $\varphi \equiv 0$, we define $r_{sl}(\varphi) = 0$.

Example

- Slice rank of $\varphi : A^2 \to \mathbb{F}_q$ is the same as rank of the corresponding $|A| \times |A|$ matrix induced by φ .
- Slice rank of

$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto \sum_{\mathbf{a} \in A} \delta_{\mathbf{a}}(\mathbf{x}) \delta_{\mathbf{a}}(\mathbf{y}) \delta_{\mathbf{a}}(\mathbf{z})$$

is $\leq |A|$.

000	0000	00000	00	00000
	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix

Slice-rank of diagonal 'matrices'

Definition

A function $\varphi : A^k \to \mathbb{F}_q$ is called diagonal if $\varphi(\mathbf{x}_1, \dots, \mathbf{x}_k) \neq 0$ only if $\mathbf{x}_1 = \dots = \mathbf{x}_k$.

Theorem

For a diagonal function φ , $r_{sl}(\varphi) = |Supp(\varphi)|$. In particular, slice rank of

$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto \sum_{\mathbf{a} \in A} \delta_{\mathbf{a}}(\mathbf{x}) \delta_{\mathbf{a}}(\mathbf{y}) \delta_{\mathbf{a}}(\mathbf{z})$$

is |A|.

Proof is standard-linear-algebra flavoured and not very interesting. We will come back later after discussing more interesting stuff...

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
೧೧೧		●0000	OO	00000
What's no	ext?			

Recall our little identity that checks whether or not $A \subseteq \mathbb{F}_{a}^{n}$ is a capset:

Preposition

A set $A \subseteq \mathbb{F}_q^n$ is a capset if and only if

$$\delta_{\mathbf{0}}(\alpha \mathbf{x} + \beta \mathbf{y} + \gamma \mathbf{z}) = \sum_{\mathbf{a} \in A} \delta_{\mathbf{a}}(\mathbf{x}) \delta_{\mathbf{a}}(\mathbf{y}) \delta_{\mathbf{a}}(\mathbf{z}) \tag{(\star)}$$

for all $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in A^3$.

And also the main theorem we want to prove:

Theorem (Ellenberg, Gijwijt)

Let $A \subseteq \mathbb{F}_a^n$ be a capset. Then,

$$|A| \leq 3N$$

where N is the number of monomials $x_1^{d_1}x_2^{d_2}\dots x_n^{d_n}$ such that $d_i \leq q-1$ for each $i \in \{1, \dots, n\}$ and $d_1 + \dots + d_n \leq (q-1)n/3$.

Introduction	Slice-rank	Proof of the Main Theorem ○●○○○	Aftermath 00	Appendix 00000
Rank of	$\delta_{\alpha}(\alpha \mathbf{x} \perp \beta \mathbf{x})$			

Lemma

Let $\varphi : A^3 \to \mathbb{F}_q$ given by $\varphi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \delta_0(\alpha \mathbf{x} + \beta \mathbf{y} + \gamma \mathbf{z}).$ Then, $r_{sl}(\varphi) \leq 3N$ where N is the number of monomials $x_1^{d_1} x_2^{d_2} \dots x_n^{d_n}$ such that $d_i \leq q - 1$ for each $i \in \{1, \dots, n\}$ and $d_1 + \dots + d_n \leq (q - 1)n/3.$

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
೧೧೧	0000	೧೧●೧೧	OO	00000
Proof				

We want to rewrite φ as sum of $\leq 3N$ slice-rank-one functions. So, define a polynomial $p \in \mathbb{F}_q[x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_n]$ by

$$p := \prod_{i=1}^n (1 - (\alpha x_i + \beta y_i + \gamma z_i)^{q-1}).$$

Note that p as a function $A^3 \to \mathbb{F}_q$ is the same as φ . Now, we expand p by multiplying everything out and it will look something messy like this:

$$\sum_{\substack{i_1,\ldots,k_n\in\mathbb{Z}_{\geq 0}\\ i\bullet,j\bullet,k\bullet\leq q-1\\ i_1+\cdots+k_n\leq n(q-1)}} C_{i_1\cdots k_n} x_1^{i_1}\ldots x_n^{i_n} y_1^{j_1}\ldots y_n^{j_n} z_1^{k_1}\ldots z_n^{k_n}.$$

Introduction	Slice-rank	Proof of the Main Theorem 000●0	Aftermath OO	Appendix 00000
Proof ((continued)			

$$\sum_{\substack{i_1,\dots,k_n \in \mathbb{Z}_{\ge 0} \\ i_{\bullet},j_{\bullet},k_{\bullet} \le q-1 \\ i_1+\dots+k_n \le n(q-1)}} C_{i_1\dots k_n} x_1^{i_1} \dots x_n^{i_n} y_1^{j_1} \dots y_n^{j_n} z_1^{k_1} \dots z_n^{k_n}.$$
(1)

Now, we want to regroup the terms. For each term, since $i_1 + \cdots + k_n \le n(q-1)$, at least one of the following quantities is at most n(q-1)/3:

$$i_1 + \cdots + i_n$$
, $j_1 + \cdots + j_n$, $k_1 + \cdots + k_n$.

So, we can collect the terms into three (not necessarily mutually-exclusive) types:

- terms with $i_1 + \cdots + i_n \leq n(q-1)/3$,
- terms with $j_1 + \cdots + j_n \leq n(q-1)/3$,
- terms with $k_1 + \cdots + k_n \leq n(q-1)/3$.

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
೧೧೧	0000		00	00000
Proof (con	tinued)			

- terms with $i_1 + \cdots + i_n \leq n(q-1)/3$,
- terms with $j_1 + \cdots + j_n \leq n(q-1)/3$,
- terms with $k_1 + \cdots + k_n \leq n(q-1)/3$.

Regrouping the terms according to their types (choose randomly if the term is in more than one type), we would have written (1) as sum of $\leq 3N$ expressions (recall that N is the number of monomials $x_1^{d_1}x_2^{d_2}\ldots x_n^{d_n}$ such that $d_i \leq q-1$ for each $i \in \{1,\ldots,n\}$ and $d_1 + \cdots + d_n \leq (q-1)n/3$). Since each of these expressions is slice-rank-one and p agrees with φ on A^3 ,

 $r_{sl}(\varphi) \leq 3N.$

Now that we have $|A| \leq 3N$, we only need to see why $N = O(c^n)$ for some constant c < q. Intuition: If we uniformly choose a random monomial from

$$S = \{x_1^{d_1} \dots x_n^{d_n} : 0 \le d_i \le q - 1 \text{ for } i = 1, \dots, n\},\$$

then, the expected degree is n(q-1)/2 which is far from n(q-1)/3. Formally, let $d = \text{Uniform}(\{0, 1, \dots, q-1\})$ be a discrete random variable and d_1, d_2, \dots be i.i.d. copies of d. Then,

$$\mathbb{P}\left(d_1+\cdots+d_n\leq \frac{n(q-1)}{3}\right)=\frac{N}{q^n}.$$

Note that Law of Large Numbers is already giving us $N = o(q^n)$, but we need to get a more precise bound.

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
೧೧೧	0000		○●	00000
Elemente	w. Droof of	$\Lambda = O(c^n)$		

Elementary Proof of N = O(c'')

First, note that

$$N = \left| \{ (d_1, \dots, d_n) : 0 \le d_i \le q - 1, \sum_{i=1}^n d_i \le \frac{n(q-1)}{3} \} \right|$$
$$= \sum_{\substack{m_0, \dots, m_{q-1} \\ m_0 + m_1 + \dots + m_{q-1} = n \\ m_1 + 2m_2 + 3m_3 + \dots + (q-1)m_{q-1} \le n(q-1)/3}} \frac{n!}{m_0! m_1! \cdots m_{q-1}!}.$$

Therefore, for all $0 \le x \le 1$,

$$Nx^{\frac{n(q-1)}{3}} \leq \sum_{\dots} \frac{n!}{m_0!m_1!\cdots m_{q-1}!} x^{m_1+2m_2+\dots+(q-1)m_{q-1}}$$
$$\leq (1+x+x^2+\dots+x^{q-1})^n$$

Hence,

$$N \leq \inf_{0 \leq x \leq 1} \left(\frac{1 + x + x^2 + \dots + x^{q-1}}{x^{(q-1)/3}} \right)^n < c^n.$$

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
೧೧೧	0000		OO	•0000
Slice rank of	f diagonal 'r	natrices'		

Now, let us present the proof of the following theorem:

Theorem

For a diagonal function $\varphi : A^k \to \mathbb{F}_q$,

 $r_{sl}(\varphi) = |Supp(\varphi)|.$

Introduction	Slice-rank 0000	Proof of the Main Theorem	Aftermath OO	Appendix 00000
Proof				

We induct on k. Base case k = 2 is already done as an example. It suffices to deal with the case where φ is non-zero on the diagonal since slice-rank does not increase under restriction: If $A_1 \subseteq A$, and $\varphi_1 = \varphi|_{A_1^k}$, then

$$r_{sl}(\varphi_1) \leq r_{sl}(\varphi).$$

Suppose to the contrary that $\varphi : A^k \to \mathbb{F}_q$ can be written as sum of less than m < |A| slice-rank-one functions.

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
೧೧೧	0000		00	00●00
Proof (page	2)			

Suppose that $\varphi: A^k \to \mathbb{F}_q$ can be written as sum of m slice-rank-one functions:

$$\varphi = \varphi_1 + \dots + \varphi_m.$$

Suppose that $\varphi_1, \ldots, \varphi_r$ separates the variable \mathbf{x}_1 i.e.

$$\varphi_i(\mathbf{x}_1,\ldots,\mathbf{x}_k) = f_i(\mathbf{x}_2,\ldots,\mathbf{x}_k)g_i(\mathbf{x}_1), \quad i=1,\ldots,r$$

for some $r \neq 0$ (WLOG), $f_i : A^{k-1} \to \mathbb{F}_q$ and $g_i : A \to \mathbb{F}_q$. Define V to be the 'orthogonal complement' of g_i 's i.e.

$$V \coloneqq \{h: A \to \mathbb{F}_q | \sum_{\mathbf{x}_1 \in A} h(\mathbf{x}_1) g_i(\mathbf{x}_1) = 0 \text{ for all } i = 1, \dots, r \}.$$

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
000	0000		00	000●0
Proof (page	3)			

Take $h \in V$ with maximal support, and consider:

$$\sum_{\mathbf{x}_1 \in A} h(\mathbf{x}_1) \varphi(\mathbf{x}_1, \dots, \mathbf{x}_k) = \sum_{\mathbf{x}_1 \in A} h(\mathbf{x}_i) (\varphi_1 + \dots + \varphi_r) (\mathbf{x}_1, \dots, \mathbf{x}_k) \\ + \sum_{\mathbf{x}_1 \in A} h(\mathbf{x}_i) (\varphi_{r+1} + \dots + \varphi_m) (\mathbf{x}_1, \dots, \mathbf{x}_k).$$

Now, both sides become functions of $\mathbf{x}_2, \ldots, \mathbf{x}_k$. But,

$$r_{sl}(\mathsf{RHS}) \leq m - r$$
, $r_{sl}(\mathsf{LHS}) = |\mathsf{Supp}(h)|$.

So, it suffices to show that $|\text{Supp}(h)| \ge |A| - r$.

Introduction	Slice-rank	Proof of the Main Theorem	Aftermath	Appendix
೧೧೧	0000	೧೦೧೦೧	OO	0000●
Proof (page	4)			

We will show that $|\text{Supp}(h)| \ge \dim V \ge |A| - r$. The latter inequality can be proven by staring at the definition of V:

$$V := \{h : A \to \mathbb{F}_q | \sum_{\mathbf{x}_1 \in A} h(\mathbf{x}_1) g_i(\mathbf{x}_1) = 0 \text{ for all } i = 1, \dots, r\}.$$

For the former, if $|\dim V| > |\operatorname{Supp}(h)|$, then the linear map $V \to \mathbb{F}_q^{|\operatorname{Supp}(h)|}$ given by evaluation at points of $\operatorname{Supp}(h) \subseteq A$ cannot be injective. Thus, we would be able to find a non-zero $h' \in V$ that vanishes on $\operatorname{Supp}(h)$. In that case,

$$|\mathsf{Supp}(h+h')| > |\mathsf{Supp}(h)|$$

contradicting the maximality.